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Abstract
We discuss aspects of gravitational modifications of Schrödinger dynamics
proposed by Diósi and Penrose. We consider first the Diósi–Penrose criterion
for gravitationally induced state vector reduction, and compute the reduction
time expected for a superposition of a uniform density cubical solid in two
positions displaced by a small fraction of the cube side. We show that the
predicted effect is much smaller than would be observable in the proposed
Marshall et al mirror experiment. We then consider the ‘Schrödinger–
Newton’ equation for an N-particle system. We show that in the independent
particle approximation, it differs from the usual Hartree approximation applied
to the Newtonian potential by self-interaction terms, which do not have a
consistent Born rule interpretation. This raises doubts about the use of the
Schrödinger–Newton equation to calculate gravitational effects on molecular
interference experiments. When the effects of Newtonian gravitation on
molecular diffraction are calculated using the standard many-body Schrödinger
equation, no washing out of the interference pattern is predicted.

PACS numbers: 03.65.Ta, 04.60.−m

1. Introduction

There is now considerable interest in mounting experiments to search for, and/or to place limits
on, possible modifications of Schrödinger dynamics. We focus in this paper on conjectured
gravitational modifications of the Schrödinger equation associated with the work of Diósi [1],
Penrose [2] and their collaborators. These authors have proposed a gravitationally based
criterion, which we refer to as the Diósi–Penrose (DP) criterion, for predicting when a
superposition of two spatially displaced states of the same object will reduce to either one state
or the other. In section 2 we briefly review the DP criterion and its theoretical motivations,
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including the gravitationally driven stochastic equation formulated by Diósi [1]. In section 3
we evaluate the DP effect for a uniform cube displaced by a small fraction of its side, and show
that the predicted rate of gravitational state vector reduction is too small to be observed in the
proposed Marshall et al [3] mirror superposition experiment. A different, non-gravitational
criterion based on displacement of the centre-of-mass wave packet, will however be tested by
the Marshall et al proposal.

Diósi [4] and Penrose [2] have also proposed a nonlinear equation, called the
‘Schrödinger–Newton’(SN) equation, for including non-stochastic effects of gravitation on
quantum evolution. In section 4 we review the SN equation, give its specialization in the
independent particle approximation, and contrast this with the standard Hartree approximation
as applied to the inter-particle Newtonian potential. We show that the two differ by a
particle self-interaction term, which is not included in the standard Hartree approximation
to Newtonian dynamics, and which does not have a consistent probabilistic interpretation
within the framework of the Born rule. Salzman and Carlip [5], motivated by searching for
distinctive features of non-quantized gravitation, have recently argued that the SN equation
implies potentially observable effects in molecular diffraction experiments. In section 5 we
consider gravitational effects on molecular diffraction in standard many-body quantum theory
as applied to the inter-particle Newtonian potential, which omits the suspect self-interaction
effect of the SN equation. We show (without invoking the Hartree approximation) that there is
a complete decoupling of gravitational effects from the centre-of-mass motion of the molecule,
and thus no reduction in visibility of molecular interference fringes is predicted.

2. The Diósi–Penrose (DP) criterion and Diósi’s stochastic Schrödinger equation

Diósi [1] proposed that there is a ‘universal gravitational white noise’, represented by a
stochastic term φ(r, t) in the gravitational potential (where r is the coordinate three-vector).
Denoting the stochastic expectation by E[· · ·], this fluctuating part of the gravitational potential
is assumed to obey

E[φ(r, t)] = 0,

E[φ(r, t)φ(r ′, t)] = h̄G|r − r ′|−1δ(t − t ′),
(1)

with G the Newton gravitational constant. Including φ in the Schrödinger equation, Diósi is
led to a stochastic dynamics

ih̄ψ̇(t) =
(

H +
∫

d3r φ(r, t)f (r)

)
ψ(t), (2a)

with H the usual Hamiltonian and f (r) the local mass density operator. This in turn implies
that the stochastic expectation density matrix ρ(t) = E[ψ(t)ψ(t)†] obeys the dynamical
equation

ρ̇(t) = −i

h̄
[H, ρ(t)] − G

2h̄

∫ ∫
d3r d3r ′

|r − r ′| [f (r), [f (r ′), ρ(t)]]. (2b)

Letting X denote the system coordinates, and f (r|X) the mass density at r for the system
configuration X, equation (2b) implies that the off-diagonal matrix element 〈X|ρ(t)|X′〉 damps
with a characteristic time τd(X,X′) given by

τd(X,X′)−1 = G

2h̄

∫ ∫
d3r d3r ′ [f (r|X) − f (r|X′)][f (r ′|X) − f (r ′|X′)]

|r − r ′| . (3)

(Note that equation (12) of Diósi’s paper where τd is defined contains an algebraic error, and
should read as in equation (3) above, which is what one gets when one takes the off-diagonal
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matrix element of Diósi’s equation (11). This error was noted some time ago by Anandan
[6].) Although the density matrix evolution of equation (3) leads to exponential damping
in time of the off-diagonal density matrix element 〈X|ρ(t)|X′〉, the stochastic Schrödinger
equation of equation (2a) does not lead to state vector reduction, since an initial superposition
of configurations X and X′ does not evolve to just one of the two alternatives. However,
a nonlinear variant of equation (2a), constructed according to the continuous spontaneous
localization scheme reviewed by Bassi and Ghirardi [7] and Pearle [7], does lead to state
vector reduction, with the stochastic expectation density matrix also obeying the evolution
equation of equation (2b).

Penrose [2] has also proposed a role for gravitation in state vector reduction, based
on the observation that when a macroscopic mass distribution is moved significantly, the
spacetime geometry is changed. Since standard quantum theory does not permit the description
of coherent superpositions of states constructed on two different background geometries,
Penrose argues that in a correct theory that merges spacetime geometry with quantum theory,
such coherences must decay. He thus arrives at a criterion which states that a coherent
superposition of matter density distributions ρ(x) and ρ ′(x) should reduce to one or the other
in a characteristic time τ−1

d = �/h̄, with � given by

� = G

∫ ∫
d3r d3r ′ [ρ(r) − ρ ′(r)][ρ(r ′) − ρ ′(r ′)]

|r − r ′| . (4)

(In his papers, Penrose uses the notation x, y for what we have termed r, r ′, and his 2000 paper
[2] giving equation (4) differs by a factor of 4π from his 1996 paper [2]. We will follow the
later version, and will reserve the designation x, y, z for the Cartesian components of r.) Apart
from obvious differences in notation, and an extra numerical factor of 2, Penrose’s criterion
of equation (4) is the same as Diósi’s criterion of equation (3), and we shall refer to the two
collectively as the Diósi–Penrose (DP) criterion.

Because equation (4) diverges for point particles, the effect predicted depends on the
radius assigned to the elementary mass distributions. Moreover, the density matrix evolution
of equation (2b) predicts energy non-conservation, which as discussed by Ghirardi, Grassi and
Rimini [8], disagrees with experimental bounds unless the point particle mass distributions are
smeared considerably more than originally envisaged by Diósi. Rather than adding a smearing
radius as an additional parameter of the model, we note that for any smearing radius greater
than a typical interatomic distance of 10−8 cm, the mass distribution becomes effectively
uniform. Motivated by this, we shall assume a homogeneous mass distribution in applying
the DP criterion.

3. Magnitude of the DP estimator in the Marshall et al mirror experiment

Continuing with equation (4), with mass distributions assumed homogeneous, let us consider
the specific geometry of the Marshall et al [3] proposal, in which a cubical mirror with side
S = 10−3 cm is put into a superposition of two states displaced parallel to a side of the cube
by d = 10−11 cm. Since the displacement d is a small fraction of the mirror dimension S,
we follow Diósi [9] and Geszti [10] and expand equation (4) to leading, quadratic order in d.
Writing

ρ(r) = ρ0θ(S − x)θ(x)θ(S − y)θ(y)θ(S − z)θ(z),

ρ ′(r) = ρ0θ(S − x)θ(x)θ(S − y)θ(y)θ(S − z − d)θ(z + d),
(5a)

with θ(x) the standard step function that jumps from 0 to 1 at x = 0, we have

ρ(r) − ρ ′(r) = ρ0θ(S − x)θ(x)θ(S − y)θ(y)[θ(S − z)θ(z) − θ(S − z − d)θ(z + d)]. (5b)
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Substituting

θ(S − z − d) � θ(S − z) − dδ(S − z)

θ(z + d) � θ(z) + dδ(z),
(5c)

we find

ρ(r) − ρ ′(r) � dρ0θ(S − x)θ(x)θ(S − y)θ(y)[−δ(z) + δ(S − z)], (5d)

with a similar expression with all coordinates replaced by primed coordinates. Thus
equation (4) becomes

� = Gd2ρ2
0I1, (6a)

with I1 given by

I1 =
∫ ∫

d3r d3r ′θ(S − x)θ(x)θ(S − y)θ(y)θ(S − x ′)θ(x ′)θ(S − y ′)θ(y ′)

× [−δ(z) + δ(S − z)][−δ(z′) + δ(S − z′)][(x − x ′)2 + (y − y ′)2 + (z − z′)2]−1/2. (6b)

Using the delta functions to eliminate the z, z′ integrals, imposing the theta function
constraints on the x, y, x ′, y ′ integrals and scaling out the cube side S, we get finally

� = 2Gd2S3ρ2
0I, (7a)

with I the dimensionless integral given by

I =
∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dx ′

∫ 1

0
dy ′

(
1

[(x − x ′)2 + (y − y ′)2]1/2
− 1

[(x − x ′)2 + (y − y ′)2 + 1]1/2

)
.

(7b)

The quadruple integral I can be simplified by transforming to sum and difference variables
ηx = x − x ′, σx = x + x ′, etc., giving the double integral form

I = 4
∫ 1

0
dηx

∫ 1

0
dηy(1 − ηx)(1 − ηy)

(
1[

η2
x + η2

y

]1/2 − 1[
η2

x + η2
y + 1

]1/2

)

= 2π/3 � 2.0944. (7c)

The evaluation of the integral on the first line of equation (7c) was done using Mathematica R©;
as a check we also used Mathematica R© to numerically evaluate the quadruple integral of
equation (7b), giving the same result.

Putting everything together, we have

� = (4π/3)Gd2S3ρ2
0 , (8a)

which with d = 10−11 cm, S = 10−3 cm and ρ0S
3 = 5 × 10−12 kg gives

� = 2.2 × 10−20h̄c cm−1, τd = h̄/� = 1.5 × 109 s. (8b)

Hence, the characteristic time for gravitational effects on the superposed cube wavefunction,
according to the DP criterion, is much longer than the observation time interval of the Marshall
et al proposal, which is given in terms of the mirror oscillation angular frequency ωm by
2π/ωm = 2 × 10−3s.

Thus, the Marshall et al proposal, even it achieves the sought-for sensitivity, will not
confront the DP proposal for state vector reduction, when interpreted using homogeneous
mass distributions. We emphasize at this point that the Marshall et al paper does not suggest
that it will test gravitationally induced reduction models (although citation of the Penrose
papers [2] in the Marshall et al proposal might lead readers to conclude otherwise). The
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mirror experiment proposal suggests a different, non-gravitational, criterion for state vector
reduction, that superpositions reduce when an object is displaced by more than the width
of the centre-of-mass wave packet, and this condition is met by the proposed experiment.
The purpose of the exercise we have just gone through has been, first of all, to get the
explicit formula for the DP criterion in the context of the mirror experiment, and secondly,
to demonstrate that the DP criterion and the centre-of-mass displacement criterion can make
very different predictions. For completeness, we note that the mirror experiment may also be
sensitive to other types of spontaneous localization models, if the stochasticity magnitude is
taken large enough to give state vector reduction in latent image formation, as discussed in
Adler [11] (which draws on earlier analyses of the mirror experiment in [12]).

4. The ‘Schrödinger–Newton’ (SN) equation in the independent particle approximation
versus the Hartree approximation

As an attempt to incorporate quantized matter into a purely classical theory of gravitation,
Møller [13] and Rosenfeld [14] have suggested that the source term in the classical Einstein
equation be taken as the expectation 〈ψ |Tµν |ψ〉 of the energy momentum operator Tµν in the
quantum state |ψ〉. As a nonrelativistic realization of this idea, Diósi [4] and Penrose [2] have
proposed what has come to be called the ‘Schrödinger–Newton’ equation, in which a quantum
many-body system of N particles moves in a gravitational potential given by the quantum
expectation of the operator Newtonian potential. Following the exposition of Diósi [4], the
many-body equation for particles of masses m1, . . . , mN is taken as

ih̄∂ψ(X, t)/∂t =
(

−
N∑

r=1

h̄2

2mr

∂2

∂x2
r

+
N∑

r,s=1

Vrs(xr − xs) +
N∑

s=1

msφ(xs, t)

)
ψ(X, t). (9a)

Here Vrs is a non-gravitational interaction potential, which we shall ignore for the present
discussion, X = (x1, x2, . . . , xN) denotes the spatial coordinates of the N particles, and φ(x)

is the Newtonian gravitational potential obtained from the nonrelativistic specialization of the
Møller–Rosenfeld equation. In other words, φ is obtained by solving

∇2φ(x, t) = 4πG

∫
d3NX′|ψ(X′, t)|2

N∑
u=1

muδ
(3)(x − x ′

u), (9b)

where X′ = (x ′
1, . . . , x

′
N). Inverting equation (9b) and substituting into equation (9a), we get

the Schrödinger–Newton equation

ih̄∂ψ(X, t)/∂t =
(

−
N∑

r=1

h̄2

2mr

∂2

∂x2
r

+
N∑

r,s=1

Vrs(xr − xs)

−G

N∑
u,s=1

∫
d3NX′ mums

|xs − x ′
u|

|ψ(X′, t)|2
)

ψ(X, t). (9c)

For a single particle of mass m, this reduces to a Schrödinger equation with a nonlinear and
nonlocal interaction term,

ih̄∂ψ(x, t)/∂t = −h̄2∇2

2m
ψ(x, t) − Gm2

∫
d3x ′ |ψ(x ′, t)|2

|x − x ′| ψ(x, t). (9d)
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Let us now specialize equation (9c) to the case when the non-gravitational interaction Vrs

vanishes, so that it becomes

ih̄∂ψ(X, t)/∂t =
(

−
N∑

r=1

h̄2

2mr

∂2

∂x2
r

− G

N∑
u,s=1

∫
d3NX′ mums

|xs − x ′
u|

|ψ(X′, t)|2
)

ψ(X, t). (10)

We wish to study the form taken by equation (10) when we make an independent particle
Ansatz,

ψ(X, t) =
N∏

r=1

ψr(xr , t), (11a)

with each single-particle wavefunction ψr normalized to unity,∫
d3xr |ψr(xr , t)|2 = 1. (11b)

Substituting equation (11a) into equation (10) and using equation (11b), and dividing by
ψ(X, t), we get

N∑
s=1

F(xs, t)/ψs(xs, t) = 0, (12a)

with

F(xs, t) = −ih̄∂ψs(xs, t)/∂t − h̄2

2ms

∂2

∂x2
s

ψs(xs, t)

−G

N∑
u=1

∫
d3x ′

u

mums

|xs − x ′
u|

|ψu(x
′
u, t)|2ψs(xs, t). (12b)

Since the different terms in equation (12a) involve independent variables xs , the usual
separation of variables argument implies that each must be a constant,

F(xs, t))/ψs(xs, t) = cs, (13a)

with the constants cs summing to zero,

N∑
s=1

cs = 0. (13b)

However, if we introduce new single-particle wavefunctions ψ̂s(xs, t) through

ψs(xs, t) = exp(icst/h̄)ψ̂s(xs, t), (13c)

then by virtue of equation (13b), we have

N∏
r=1

ψr(xr , t) =
N∏

r=1

ψ̂r (xr , t), (13d)

and equation (13a) becomes F̂ (xs, t) = 0, where F̂ (xs, t) is obtained from F(xs, t) of
equation (12b) by replacing ψs by ψ̂s . We thus conclude that there is no loss of generality in
taking the separation constants cs all as zero, and the single-particle equation as F(xs, t) = 0,
that is

ih̄∂ψs(xs, t)/∂t = − h̄2

2ms

∂2

∂x2
s

ψs(xs, t) − G

N∑
u=1

∫
d3x ′

u

mums

|xs − x ′
u|

|ψu(x
′
u, t)|2ψs(xs, t). (14)
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Equation (14) has an almost familiar look; it has the same structure as the time-dependent
single-particle equation that one would get by treating the Newtonian inter-particle potential
in the Hartree approximation, except that it includes a self-interaction term coming from the
u = s term in the summation,

−G

∫
d3x ′

s

m2
s

|xs − x ′
s |

|ψs(x
′
s , t)|2ψs(xs, t). (15a)

Such self-interaction terms of a single particle never appear in the Hartree equation, and do
not have a consistent interpretation within the Born rule interpretation of quantum theory. A
term with u �= s in the potential energy of equation (14),

−G

∫
d3x ′

u

mums

|xs − x ′
u|

|ψu(x
′
u, t)|2ψs(xs, t), (15b)

has the interpretation that the gravitational potential felt by particle s at coordinate xs , as a result
of the presence of particle u at x ′

u, is the Newtonian potential −Gmums/|xs − x ′
u| weighted

by the probability |ψu(x
′
u, t)|2 of finding particle u at x ′

u. However, this interpretation does
not extend to the case u = s, since when particle s is at xs , the probability of simultaneously
finding it at x ′

s is zero! In terms of projectors, in the case u �= s we have that Pu(x
′
u)Ps(xs)

gives a nonzero projector for finding particle s at xs , and particle u simultaneously at x ′
u.

However, in the case u = s we have Ps(x
′
s)Ps(xs) = 0 for all x ′

s �= xs .
We conclude from this analysis that the Schrödinger–Newton equation does not give a

consistent interpretation of the mutual gravitational interactions within a single system of
particles. It can, however, be used to calculate the gravitational effect of one group of particles
on a disjoint group of particles (say, of the sun on a planet), since then the problematic
self-interaction terms are not present.

5. Gravitational effects on molecular scattering in standard many-body quantum
theory

In a recent archive posting, Salzman and Carlip [5] studied the single-particle case,
equation (9d), of the SN equation, and based on this suggested that there may be significant
nonlinear gravitational effects in potentially observable situations, such as molecular
interferometry experiments. However, the single-particle case of the SN equation consists
of a self-interaction term which, as we observed in the preceding section, does not appear
in the standard Hartree approximation, and which does not have a Born rule interpretation.
This makes it problematic, we believe, to apply the SN equation to the mutual gravitational
interactions within a system of atoms, as needed, for example, to discuss gravitational effects
in molecular diffraction.

There is a standard way of treating gravitational effects on large molecules, within
conventional many-body theory (without use of the Hartree approximation), which leads
to a different conclusion from that reached in [5]. One simply includes in the interaction
term

N∑
r,s=1

Vrs(xr − xs) (16a)

of equation (9a) a Newtonian gravitational potential term

−1

2

∑
r �=s

Gmrms

|xr − xs | , (16b)
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in analogy with the usual treatment of the inter-particle Coulomb potential. Since both
equation (16a) (which includes the Coulomb force terms) and equation (16b) (which is the
gravitational perturbation) depend only on the relative coordinates xr − xs , they do not appear
in the equation for the centre-of-mass wavefunction of the molecule. The centre of mass
will thus obey a free-particle Schrödinger equation, subject to external potentials (such as
diffraction gratings) acting on the molecule. Therefore, one expects no significant effect on
the molecular interference pattern from the mutual gravitational interactions of the molecular
constituents. Such gravitational perturbations will very slightly change the shape and energy
levels of the molecule, but will not exert an influence on its centre-of-mass motion, other than
(when relativistic effects are taken into account) through their small modification of the mass
of the molecule.

We conclude with a question that suggests further work. As noted above, the SN
equation arises from applying the Møller–Rosenfeld semiclassical equation to the Newtonian
interaction of a many-particle system. Do the problems that we have encountered indicate
that a semiclassical approach to gravitation is inconsistent, and hence that gravity must be
quantized [15]? Or do they only indicate that a modification of the Møller–Rosenfeld and
SN approach should be sought, which will make possible a consistent semiclassical theory of
gravitational effects?
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[13] Møller C 1962 Les Théories Relativistes de la Gravitation Colloques Internationaux CNRS 91 ed A Lichnerowicz
and M-A Tonnelat (Paris: CNRS)

[14] Rosenfeld L 1963 Nucl. Phys. 40 353
[15] Page D N and Geilker C D 1981 Phys. Rev. Lett. 47 979

Ballentine L E 1982 Phys. Rev. Lett. 48 522
Hawkins B 1982 Phys. Rev. Lett. 48 520
Unruh W G 1984 Steps towards a quantum theory of gravity Quantum Theory of Gravity: Essays in Honor of

the 60th Birthday of Bryce S. De Witt ed S M Christensen (London: Hilger)

http://www.arxiv.org/abs/quant-ph/0604157
http://dx.doi.org/10.1016/0029-5582(63)90279-7
http://dx.doi.org/10.1103/PhysRevLett.47.979
http://dx.doi.org/10.1103/PhysRevLett.48.522
http://dx.doi.org/10.1103/PhysRevLett.48.520

	1. Introduction
	2. The Diósi--Penrose (DP) criterion and Diósi's stochastic Schrödinger equation
	3. Magnitude of the DP estimator
	4. The `Schrödinger--Newton' (SN) equation in the independent particle approximation versus the Hartree approximation
	5. Gravitational effects on molecular scattering in standard many-body quantum theory
	Acknowledgments
	References

